Mengakomodasi Efek Metode dalam Pengujian Validitas Konstruk Melalui Analisis Faktor Konfirmatori

Wahyu Widhiarso


Literatures in the field of psychometrics recommend researchers to employvarious of methods on measuring individual attributes. Ideally,each methods are complementary and measuresthe construct designed to be measured. However, some problems arise when among the methods is unique and unrelated to the construct being measured. The uniqueness of method can lead what is called the method effect. In testing construct validity using confirmatory factor analysis, the emergence of this effect tend to reducing the goodness of fit indices of the model. There are many ways to solve these problem, one of themis controling the method effects and accommodate it to the model. This paper introduces how to accommodate method effecton the confirmatory factor analysis using structural equation modeling. In the application section, author identify the emergence of method effects due to the differences item writing direction (favorable-unfavorable). The analysis showed that method effectemerge from different writing direction.


Method Construct; Method Effect; Positive-negatively worded items

Full Text:


Article Metrics

Abstract view : 214 times
PDF - 166 times


Andrews, F.M. (1984). Construct Validity and Error Components of Survey Measures: A Structural Modeling Approach. The Public Opinion Quarterly, 48(2), 409-442.

Arbukle, J.L., & Wothke, W. (1999). AMOS 4.0 User’s Guide. Chichago: Smallwaters Corp. .

Campbell, D.T., & Fiske, D.W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56(2), 81-105.

Chen, Y.-H., Gobioff, G.R., & Dedrick, R.F. (2010). Factorial invariance of a chinese self-esteem scale for third and sixth grade students: Evaluating method effects associated with positively and negatively worded items The International Journal of Educational and Psychological Assessment, 6(1), 21-35.

Eid, M., Lischetzke, T., Nussbeck, F.W., & Trierweiler, L.I. (2003). Separating trait effects from trait-specific method effects in multitrait-multimethod models: A multiple-indicator CT-C(M-1) model. Psychological Methods, 8(1), 38-60.

Fiske, D.W. (1982). Convergent–discriminant validation in measurements and research strategies. In D. Brinbirg & L. H. Kidder (Eds.), Forms of validity in research. San Francisco: Jossey-Bass. Geiser, C., Eid, M., & Nussbeck, F.W. (2008). On the meaning of the latent variables in the CT-C(M-1) model: A comment on Maydeu-Olivares and Coffman (2006). Psychological Methods, 13(1), 49-57.

Geiser, C., Eid, M., West, S.G., Lischetzke, T., & Nussbeck, F.W. (2012). A Comparison of Method Effects in Two Confirmatory Factor Models for Structurally Different Methods. Structural Equation Modeling: A Multidisciplinary Journal, 19(3), 409-436.

Grayson, D., & Marsh, H. (1994). Identification with deficient rank loading matrices in confirmatory factor analysis: Multitrait-multimethod models. Psychometrika, 59(1), 121-134.

Hair, J.F., Black, W.C., Babin, B.J., & Anderson, R.E. (2010). Multivariate Data Analysis. New Jersey: Prentice Hall.

Jöreskog, K.G., & Sörbom, D. (1996). LISREL 8: User's Reference Guide. Chicago Scientific Software International. Kenny, D.A. (1976). An empirical application of confirmatory factor analysis to the multitrait-multimethod matrix. Journal of Experimental Social Psychology, 12(3), 247-252.

Kenny, D.A., & Kashy, D.A. (1992). Analysis of the multitrait-multimethod matrix by confirmatory factor analysis. Psychological Bulletin, 112(1), 165-172.

Kline, R.B. (2011). Principles and Practice of Structural Equation Modeling. New York, NY: Guilford Publications, Inc.

Lance, C.E., Baranik, L.E., Lau, A.R., & A., S.E. (2009). If it ain’t trait it must be method: (mis)application of the multitrait-multimethod design in organizational research. In C. E. Lance & R. L. Vandenberg (Eds.). New York: Routledge

MacKenzie, S.B., & Podsakoff, P.M. (2012). Common Method Bias in Marketing: Causes, Mechanisms, and Procedural Remedies. Journal of Retailing, 88(4), 542-555.

Marsh, H.W. (1996). Positive and negative global self-esteem: A substantively meaningful distinction or artifactors? Journal of Personality and Social Psychology, 70(4), 810-819.

Marsh, H.W., Asci, F.H., & Thomas, I.M. (2002). Multitrait-multimethod analyses of two physical self-concept instruments: A cross-cultural perspective. [Empirical Study]. Journal of Sport & Exercise Psychology, 24(2), 99-119.

McLaughlin, T.P., Khandker, R.K., Kruzikas, D.T., & Tummala, R. (2006). Overlap of anxiety and depression in a managed care population: prevalence and association with resource utilization. Journal of Clinical Psychiatry 67(8), 1187-1193.

Muthen, L.K., & Muthen, B.O. (2005). Mplus: Statistical analysis with latent variables: User's guide. Los Angeles, CA.: Muthen & Muthen. Podsakoff, P.M.,

MacKenzie, S.B., & Podsakoff, N.P. (2011). Sources of Method Bias in Social Science Research and Recommendations on How to Control It. Annual Review of Psychology, 63(1), 539-569.

Pohl, S., & Steyer, R. (2010). Modeling Common Traits and Method Effects in Multitrait-Multimethod Analysis. Multivariate Behavioral Research, 45(1), 45-72.

Raykov, T., & Marcoulides, G.A. (2006). A first course in structural equation modeling. Mahwah, NJ: Lawrence Erlbaum Associates. Urbina, S. (2004). Essentials of psychological testing. Hoboken, NJ.: John Wiley & Sons, Inc.


  • There are currently no refbacks.

Copyright (c) 2016 Psikologia (Jurnal Ilmu Psikologi)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.